Exam
 Mechanics \& Relativity 2017-2018
 December 15, 2017

INSTRUCTIONS

- This exam comprises 3 problems. Start your solution of each problem on a separate sheet.
- Write the name of your tutor and/or group on the top right-hand corner of the first sheet handed in, and drop your work in the box with your tutor's name. *
- The answers to problems 1 through 3 require clear arguments and derivations, all written in a well-readable manner.
- The number of points for every subquestion are indicated inside a box in the margin. The total number of points per problem is

Problem	\# of points
1	5
2	10
3	5

and the grade is computed as (total \# points) $/ 20 * 9+1$.

[^0]The answers to problems 1 through 3 require clear arguments and derivations, all written in a well-readable manner.

Problem 1 Two circles in a plane, C1 and C2, each rotate with frequency ω (as measured relative to an inertia frame). The center of C 1 is fixed in an inertial frame. The center of C 2 is fixed on C 1 . A mass m is fixed on C 2 .

The position of the mass relative to the center of C 1 is indicated by the vector $\mathbf{R}(t)$. Find the direction and the magnitude of the fictitious force felt by the mass due to rotations of both circles.

Problem 2 Three identical springs and two masses, m and $2 m$, lie between two walls as shown in Figure below. The positions of the left-hand and right-hand masses are $x_{1}(t)$ and $x_{2}(t)$, respectively, relative to their equilibrium positions.

a. Show that the potential energy of the system can be written as:

$$
V=k\left(x_{1}{ }^{2}-x_{1} x_{2}+x_{2}{ }^{2}\right)
$$

b. Derive the equations of motion for the two masses.
c. Find the eigenmodes, and show that the eigenfrequencies are

$$
\sqrt{\frac{k}{m}} \sqrt{\frac{3 \pm \sqrt{3}}{2}}
$$

Problem 3 Consider a disk of radius R rolling without slipping on the ground. While it spins with angular velocity ω its forward velocity has magnitude $v=R \omega$. At a particular instant we mark 4 points on the circumference, A thru D, with C being the point that is currently in contact with the ground. Since the disk does not slip, the instantaneous velocity of C is zero.

a. Copy the schematic and add the spin vector $\boldsymbol{\omega}$.
b. Show that the velocity vector of the center of the disk satisfies the vectorial relation $\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r}$ in which \mathbf{r} is the position vector from the contact point C to the center.
c. Use this expression to determine the velocity vectors of the points A, B and D.

[^0]: *Anupam: is this still useful in the current grading procedure?

